miércoles, 28 de octubre de 2015

Teoría de juegos y el teorema del punto fijo


El teorema del punto fijo fue establecido en 1910 por el matemático Jan Brower, y establece que toda función continua y acotada que solo toma valores finitos, admite al menos un punto fijo.
Teorema 1: Sea F una función continua en [a,b] tal que función contínua teoría de juegosentonces la ecuación x = F(x) tiene al menos una solución en el intervalo [a,b]. A esta solución se le denomina punto fijo.
Von Newmann fue el primero que estableció un nexo entre la noción de equilibrio y la de punto fijo de una función, tal como se emplea en matemáticas; realmente de la misma manera que un punto fijo xde una función permanece constante mientras se le aplica la función (el punto fijo es tal que (f(x)=x)); un equilibrio “no se mueve”, es fijo, cuando está sometido a distintas “fuerzas” de las cuales él es la resultante. De tal manera en una situación de “juego” dónde los individuos toman decisiones, anticipándose a las de otros agentes, hay equilibrio si sus anticipaciones son confirmadas en el momento en el cual las decisiones de cada uno las conocen todos; ahora este equilibrio puede ser considerado como un punto fijo de la función que hace corresponder las selecciones antes que las decisiones “de los otros” sean conocidas a las selecciones -eventuales- después de que estas han sido anunciadas.
Mediante el empleo de esta especie de analogía John Nash prueba en 1950, que todo juego no cooperativo, es decir, aquél en el cual cada uno sólo se preocupa por sus propias ganancias, admite al menos un equilibrio. Además, su demostración se apoya de manera decisiva en el teorema del punto fijo  
El procedimiento de Nash fue retomado y adaptado por los micro economistas que se preguntaban sobre los equilibrios de sus modelos; en la medida en que el teorema del punto fijo permite generalmente responder a una cuestión como aquella, se puede decir que la microeconomía actual se construye de tal manera que se cumplan las hipótesis de aquel teorema y se asegure en consecuencia la existencia de equilibrios. Esta explicación vale particularmente para el modelo de Arrow-Debreu, que es el modelo básico para la microeconomía.


No hay comentarios.:

Publicar un comentario